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Abstract 

Crisis management teams (e.g. fire and rescue services, anti-terrorist units ...) are often confronted with 

dramatic situations where critical decisions have to be made within hard time constraints. Therefore, they 

need correct information about what is happening on the crisis site. In this context, the View-Finder 

projects aims at developing robots which can assist the human crisis managers, by gathering data. This 

paper gives an overview of the development of such an outdoor robot. The presented robotic system is 

able to detect human victims at the incident site, by using vision-based human body shape detection. To 

increase the perceptual awareness of the human crisis managers, the robotic system is capable of 

reconstructing a 3D model of the environment, based on vision data. Also for navigation, the robot 

depends mostly on visual perception, as it combines a model-based navigation approach using geo-

referenced positioning with stereo-based terrain traversability analysis for obstacle avoidance. The robot 

control scheme is embedded in a behavior-based robot control architecture, which integrates all the robot 

capabilities. This paper discusses all the above mentioned technologies. 

 

Keywords 

Visually guided robots, Dense Structure from Motion, Behavior-based Robot Control, Intelligent Mobile 

Outdoor Robots, Crisis Management 

 

1. Introduction 

1.1. Goal and problem statement 

When confronted with a large crisis, the human crisis managers require a complete overview of 
the crisis site is necessary to take correct decisions. However, obtaining such a complete 
overview of a complex site is not possible in real-life situations when the crisis management 
teams are confronted with large and complex unknown incident sites. In these situations, the 
crisis management teams typically concentrate their effort on a primary incident location (e.g. a 
building on fire, a crashed airplane ...) and only after some time (depending on the manpower 
and the severity of the incident), they turn their attention towards the larger surroundings, e.g. 
searching for victims scattered around the incident site. A mobile robotic agent could aid in 
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these circumstances, gaining valuable time by monitoring the area around the primary incident 
site while the crisis management teams perform their work. However, as the human crisis 
management teams are in general already overloaded with work and information in any medium 
or large scale crisis situation, it is essential that such a robotic agent – to be useful - does not 
require extensive human control (hence it should be semi-autonomous) and it should only report 
critical information back to the crisis management control center. The design requirements for 
such a robotic crisis management system give rise to four main problems which need to be 
solved for the successful development and deployment of such a mobile robot: 
 

1. How can the robot automatically detect human victims, even in difficult outdoor 
illumination conditions? 

2. How can the robot, which needs to navigate autonomously in a totally unstructured and 
unknown environment, auto-determine the suitability of the surrounding terrain for 
traversal? 

3. How can the robotic system increase the perceptual awareness of the human crisis 
managers? 

4. How can the robot be made semi-autonomous, such that the human crisis managers are 
not overloaded with the task of controlling the robot?  

 
In response to the first question, we present an approach to achieve robust victim detection in 
difficult outdoor conditions, by going out from the Viola-Jones algorithm for Haar-features based 
template recognition and adapting it to recognize victims. Victims are assumed to be human 
body shapes lying on the ground. The algorithm tries to classify visual camera input images into 
human body shapes and background items. This approach is further explained in section 2.1. 
 
The second problem which is stated above is that of the traversability estimation. This is a 
challenging problem, as the traversability is a complex function of both the terrain 
characteristics, such as slopes, vegetation, rocks, etc. and the robot mobility characteristics, i.e. 
locomotion method, wheel properties, etc. In section 2.2, we present an approach where a 
classification of the terrain in the classes "traversable" and "obstacle" is performed using only 
stereo vision as input data.  
 
In response to the third question, we propose an image-based 3D reconstruction technique, 
enabling to reconstruct a global 3D model of the environment, as seen by the robot. Using this 
global 3D model, valuable information (presence of victims, dangerous gasses …) can be 
visualized to the crisis managers in a user friendly interface. The proposed 3D reconstruction 
methodology is further explained in section 3. 
 
The final question raises the important issue that any robotic system should not increase the 
cognitive load for the human crisis managers. These human crisis managers prefer a scenario 
where they designate a working area to the robot, or select a set of interesting locations to 
investigate, and then the robot should execute this high-level task. Therefore, it is required that 
the robot can navigate to geo-referenced locations on a map. A behavior based control 
paradigm was chosen as a control mechanism to combine all robot capabilities in a 
comprehensive and modular framework, such that the robot can handle a high-level task 
(searching for human victims) with minimal input from human operators, by navigating in a 
complex, dynamic and environment, while avoiding potentially hazardous obstacles, using 
stereo vision as a main source of sensor information. The behavior based control architecture is 
further detailed in section 3 of this paper. 
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1.2. System description 

The "ROBUDEM" outdoor mobile robotic platform which was developed in the framework of the 
View-Finder project is shown on Figure 1. It is equipped with a GPS system for accurate geo-
registered positioning and a stereo vision system. Next to these primary sensors it also 
disposes of 5 sonar sensors for collision avoidance and an Inertial Measurement Unit (IMU) for 
orientation measurement. For processing, the robot is equipped with two PC's: one featuring a 
Real-Time Linux operating system for low-level motor control, and one 1.6GHz Dual Core 
Windows PC, dealing with all high-level processing tasks. It is important to note that the 
developed robot must be seen as a research platform, designed to evaluate the presented 
technologies, not as an actual prototype of a real crisis management robot. For this purpose, the 
current platform is too large, too heavy and not fire and weatherproof enough. However, it 
presents an excellent platform to test the technologies presented in this paper and which can 
then be later integrated on a more robust real crisis management robot. 
 

  

Figure 1: The ROBUDEM robot used as a test platform for the presented technologies. 

 

2. Visual perception 

The Robudem robot used for the View-Finder project relies on vision as its primary sensing 
modality. Therefore, the amount of information which can be extracted from the measurements 
acquired by the on-board stereo camera system must be maximized. To this extent, multiple 
processing cues for the visual data are established. An important aspect of all these processing 
cues is that the information they deliver must be available in real-time, or near real-time. This 
constraint limits the complexity of the applied algorithms and calls for a balanced compromise 
between the quality of the output and the required processing time.  
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2.1. Human victim detection 

Automated human victim detection is a very difficult task, especially in complex, unstructured 
environments. In order to detect a human victim, one or more physical parameters of the victim 
need to be perceived by a sensor. These physical parameters can be (Burion, 2004): voice, 
temperature, scent, motion, skin color, face or body shape. Here, we present an approach to 
achieve robust victim detection in difficult outdoor conditions.  
The basis for this work is a learning-based object detection method, proposed by Viola and 
Jones (Viola, 2004). Viola and Jones originally applied this technique in the domain of face 
detection. Their system yields face detection performance comparable to the best previous 
systems and is considered the fastest and most accurate pattern recognition method for faces in 
monocular grey-level images.  
For the victim-detection application, we adapted the Viola-Jones technique, by training the 
algorithm with bodies, lying on the ground. To deal with the huge number of degrees of freedom 
of the human body and the camera viewpoint, the configuration space for human victims was 
reduced to victims lying face down and more or less horizontally in front of the camera. This 
case has been chosen because in real disasters this pose has the highest probability. The 
people try to protect their head and their ventral body parts which are the most vulnerable. 
Another reason is that in this position, the possible positions of the limbs form a relatively small 
pool comparing to the other cases. Also the orientation of the body must be considered because 
the legs have a different shape than the upper body and the head. To handle this, the sample 
images were taken with the both body orientations (left-to-right and right-to-left). To enlarge the 
data-set, the images were then later flipped horizontally and re-used during the Haar-training.  
For database training, 800 positive scenes were recorded, featuring human victims in several 
orientations and under varying illumination. These images were taken with an on-board stereo 
camera system. Furthermore 500 pairs of negative images were recorded outside and 100 pairs 
inside. These images contain no humans but the variety of the background is high, such that the 
learning method sets up good thresholds. 
 

 
Figure 2: An example test image for Victim Detection 
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Theoretically, the classifier for victim detection has a 100% detection rate and less than 10-6 % 
false alarm rate. Of course, this is only true in the case of the positive and negative sample 
images. With new test images - which were taken in similar illumination conditions as the 
sample images but in different positions - the correct detection rate was approximately 65%. 
Figure 2 shows the result of the victim detection algorithm. The red rectangles are the hits of the 
detector for the victims whose head is at the left, the yellow ones for those whose head is at the 
right. In the first image of Figure 2, the victim was correctly found besides of a lot of false 
positives. These false alarms are eliminated by merging the adjacent rectangles of correct 
posture. The processing time for running the victim detector is between 60 and 80 milliseconds, 
which means that we are able to achieve 13 to 16 frames per second. This is a very good result, 
as it allows near real-time reactions in the robot control scheme and it also allows integrating the 
results of multiple detection runs over time by means of a tracking scheme, to enhance the 
detection rate and reduce the false positive rate. 

 

2.2. Terrain-traversability estimation 

Terrain traversability analysis is a research topic which has been in the focus of the mobile 
robotics community in the past decade, inspired by the development of autonomous planetary 
rovers and, more recently, the DARPA Grand Challenge.  
In this paper, we present an approach where a classification of the terrain in the classes 
"traversable" and "obstacle" is performed using only stereo vision as input data. In a first step, 
high-quality stereo disparity maps are calculated by a fast and robust algorithm (Scharstein, 
2002). Using this stereo depth information, the terrain classification is performed. Detecting 
obstacles from stereo vision images may seem simple, as the stereo vision system can provide 
rich depth information. However, from the depth image, it is not evident to distinguish the 
traversable from the non-traversable terrain, especially in outdoor conditions, where the terrain 
roughness and the robot mobility parameters must be taken into account.  

 
Figure 3: Terrain Traversability Estimation: a) Left stereo image; b) Disparity image; c) V-Disparity image 

after Hough transform; d) Obstacle image. 
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Our approach is based on the construction and subsequent processing of the v-disparity image 
(Labayrade, 2002), which provides a robust representation of the geometric content of road 
scenes. The v-disparity image is constructed by calculating a horizontal histogram of the 
disparity stereo image. Consider 2 stereo frames, as shown in Figure 3a, and the computed 
disparity image ID, as shown in Figure 3b. Then, the v-disparity image IV can be constructed by 
accumulating the points with the same disparity that occur on a horizontal line in the image. 
Figure 3c displays the v-disparity image IV for the given input images.  
The classification of the terrain in traversable and non-traversable areas goes out from the 
assumption that the majority of the image pixels are related to traversable terrain of the ground 
plane. The projection of this ground plane in the v-disparity image is a straight line, from the top 
left to the bottom right of the v-disparity image. Any deviations from this projection of the ground 
plane are likely obstacles or other non-traversable terrain items. As such, the processing of the 
v-disparity image comes down to estimating the equation of the line segment in the v-disparity 
image, corresponding to the ground plane. This is done by performing a Hough transform on the 
v-disparity image and searching for the longest line segment. The red line in Figure 3c indicates 
the largest line segment, corresponding to the ground plane.  
Finally, one must choose a single parameter which accounts for the maximum terrain 
roughness. As this parameter depends only on the robot characteristics, it only needs to be set 
once. This parameter sets the maximum offset in v-disparity space to be considered part of the 
ground plane. The two pink lines in Figure 3c indicate the region in v-disparity space where 
pixels are considered part of a traversable region. Terrain corresponding to pixels in v-disparity 
space in between the two pink lines is considered traversable, while any outliers are regarded 
as obstacles, which enables to compile an obstacle image IO. The result of this operation can be 
judged from Figure 3d, showing the obstacle image. This is a version of the color input image, 
where false color data corresponding to the disparity is superposed for pixels classified as 
belonging to non-traversable terrain. 
It may be noted that the lower part of the legs of the person standing in front of the robot were 
not detected as obstacles. This is due to the choice of the threshold parameter for the ground 
plane. After tests in multiple environments, we used a threshold parameter of 50, which offers a 
good compromise between a good detection rate and low false positive detection rate.  

 

3. Visual 3D reconstruction 

When confronted with a large crisis, the crisis management teams require a global overview of 
the crisis scene. In practical situations, however, it is near impossible to obtain such a global 
overview, due to the abundance of information coming from different sources and the lack of a 
global model of the crisis scene where all this information can be nicely visualized upon. In this 
section, we propose an automated 3D reconstruction approach for building a global 3D model. 
This 3D reconstruction approach is based on dense structure from motion (SFM) recovery from 
images captured by a camera on-board a semi-autonomous crisis management robot. Dense 
structure from motion algorithms aim at estimating a 3D location for all camera image pixels.  

There are multiple approaches towards dense structure from motion. The most modern dense 
structure from motion algorithms minimize the optical flow constraint and enforce smoothness in 
the depth field in a variational framework. However, due to the noisiness of the optical flow and 
due to projection ambiguities, these algorithms are still not very robust when confronted with 
unconstrained 3D camera motion and changing illumination conditions. One could argue that 
these problems are due to the fact that dense structure from motion is a relatively new field of 
research that emerged recently due to the rise in computing power. 
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Sparse structure from motion, on the other hand, is a more mature research domain, which 
dates back to the early work of Longuet-Higgins (Longuet-Higgins, 1981). Through the years, 
sparse structure from motion algorithms have been optimized and made more robust, notably 
by the work of Hartley and Zissermann (Hartley, 2004).  

To address the classical dense structure from motion shortcomings, we adopt a dual approach 
for dense structure estimation (De Cubber, 2010). The approach combines the strength of the 
more robust feature-based structure from motion approaches with the spatial coherence of 
dense reconstruction algorithms. Dense reconstruction is regarded as a high-dimensional data 
fusion problem with as inputs the camera motion parameters and 3D coordinates of feature 
points estimated by sparse reconstruction and dense optical flow. The base constraint of the 
variational approach is the traditional image brightness constraint, but parameterized for the 
depth using the 2-view geometry. This estimation of the geometry, as expressed by the 
fundamental matrix, is automatically updated at each iteration of the solver. A regularization 
term is added to ensure good reconstruction results in image regions where the data term lacks 
information. An automatically updated regularization term ensures an optimal balance between 
the data term and the regularization term at each iteration step. A semi-implicit numerical 
scheme was set up to solve the dense reconstruction problem. The solver goes out from am 
initialization process which fuses optical flow data and sparse feature point matches. 

The developed methodology is capable of estimating a high quality 3D reconstruction of a 
natural scene (as presented in section 5), which makes it a valuable tool for human crisis 
management teams. Indeed, the results obtained during a real crisis management exercise, 
show that the visual models outputted by the presented method, can increase the situational 
awareness of the human crisis managers by integrating localized information on the 3D model.  

 

4. Behavior-based robot control 

Figure 4 illustrates the general robot control architecture, set up as a test bed for the algorithms 
discussed in this paper. The RobuDem robot used in this setup features 2 on-board processing 
stations, one for low-level motor control (Syndex Robot Controller), and another one for all the 
high-level functions. A remote robot control PC is used to control the robot and to visualize the 
robot measurements from a safe distance. All data transfer between modules occurs via TCP 
and UDP-based connections, relying on the CoRoBa (Colon, 2006) protocol.  
A behavior-based navigational architecture is used for semi-autonomous intelligent robot 
control. Behavior-based techniques have gained a widely popularity in the robotics community 
(Jones , 2004), due to the flexible and modular nature of behavior-based controllers, facilitating 
the design process. Following the behavior based formalism, a complex control task is 
subdivided into a number of more simple modules, called behaviors, which each describe one 
aspect of the sensing, reasoning and actuation robot control chain. Each behavior outputs an 
objective function, o(x), which is a multi-dimensional normalized function of the output 
parameters, where x is an n-dimensional decision variable vector. The degree of attainment of a 
particular alternative x, with respect to the kth objective is given by ok(x).  
A first behavior implemented on the robot is a goal seeking behavior. From the robot control 
station, the human operator is able to compile a list of waypoints for the robot. The path 
planning module compares this list of waypoints with the robot position and calculates a 
trajectory to steer the robot to the goal positions in the list. The first point on this trajectory list is 
sent to a GoToGoal behavior module, which aims to steer the robot to this point, as such 
executing the trajectory defined by the path planner. 
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Figure 4: Robot Control Architecture 

The ROBUDEM robot uses vision as a primary sensing modality and is therefore equipped with 
a stereo vision system. The information from this stereo vision system is used threefold:  

1. The (left) color image is sent to a victim detection module, as presented in section 2.1. 
The victim detection module will report any detected human victims back to the human 
operator at the remote control station. For now, it is up to the user to decide how to react 
to the victim detection event, there is no automated response of the robot. 

2. The color images are sent over the wireless link, such that the human operator receives 
at all time a visual cue of the environment. This is absolutely necessary when the robot 
is operating under tele-operation mode. In tele-operation mode, a human operator can 
control the robot by means of a joystick. Therefore, a first behavior is set up such that 
the robot obeys to the joystick commands. 

3. The stereo data is processed by a terrain traversability estimation module, as presented 
in section 2.2. The obstacle image, resulting from this process, is analyzed and an 
ObstacleAvoidance behavior is set up to drive the robot away from any obstacles.  

 
The specific design of each of these behaviors is out of the scope of this paper and is also not 
of primordial importance, as it uses classical methods of designing objective functions for 
behaviors. As usual in behavior-based control, the more important question is how to combine 
the different behaviors to come to a globally optimal control command for the robot to execute. 
For this, we have used the approach proposed by Doroftei et al. in (Doroftei, 2009). Their 
methodology consists of an extension of the classical goal-programming method, by integrating 
it with an approach based on reliability analysis. This methodology has the advantage that it 
incorporates direct information from the system under control into the control process, while 
taking into account a decision maker's preferences. As such, a globally optimal control 
command can be estimated, which is used to steer the different robot actuators. 
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5. Integrated results of a live crisis management exercise 

The presented technologies were tested during an integrated crisis management exercise, 
where an airplane crash was simulated. During this exercise, a semi-autonomous robot was 
asked by the firefighters to search for human survivors (in this case: the pilot who ejected from 
the airplane before the crash) near the incident site and while doing this, it was requested to 
build a 3D model of the environment. Figure 5 shows some images taken by the robot on-board 
camera during this validation test, whereas Figure 6 shows the reconstructed 3D model.  

 

Figure 5: Some frames shot by the semi-autonomous robot during the crisis management exercise and 
an external view 

The 3D model of Figure 6 shows a good resemblance to the physical nature of the environment 
and all required features can be identified: the ground plane, the bunker in the back, the 
canopy... As also the motion of the camera (which is fixed on the robot) is reconstructed using 
the presented methodology, the robot can be positioned in the virtual environment. As an 
example of how this 3D model can be efficiently used by crisis management teams, the 3D 
model of Figure 6 also indicates the position of a human survivor. The presence of the human 
survivor was detected by the human victim detection algorithm, as presented in section 2.1 and 
this information was fused with the 3D information obtained through the presented depth 
reconstruction algorithm to locate and visualize the victim in the 3D model. The visualization of 
the virtual 3D scene with added localized information, as presented by Figure 6, provides a 
powerful tool for the human crisis management teams to augment their situational awareness 
without increasing the cognitive load too much, as the whole process of data acquisition by the 
robot and processing by the presented algorithm is automated. 

  

Figure 6: Reconstructed 3D model of the environment, showing the camera/robot position and an 
indication of the presence of human survivors 
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6. Conclusions and future work 

The integration test discussed above can be called successful, as the was able to scan the 
designated zone without any major problems. However, to come to a robotic system which can 
be practically deployed, there are still a number of issues to be solved: 

 The response time must be drastically reduced, by better integration of robot services; 

 The false detection rate of the victim detector must be reduced by embedding the 
detector in a tracking scheme; 

 The terrain traversability estimation must be tested with different types of terrain; 

 The 3D scene reconstruction algorithm must be made faster, such that the human 
operators can be presented a 3D view of the environment in near real-time; 

 An active vision system with a larger field of view should be used; 

 A practical robot prototype must be lighter, smaller, and more fire and weatherproof. 
In the near future, the robot will also be equipped with a gas-sensor. This is of particular interest 
for fire fighters, as the presence of toxic or highly explosive chemicals at the incident site is a 
very important factor to assess when deciding to send in a team of human fire fighters. 
Despite these obvious shortcomings which leave the way for future work, the current 
ROBUDEM robotic system very well succeeds in fulfilling the design requirements set up at the 
beginning of this project: it can handle a high-level task (searching for human victims) with 
minimal input from human operators, by navigating in a complex, dynamic and environment, 
while avoiding potentially hazardous obstacles. If required, a remote human operator can still 
take control of the robot via the joystick, but in normal operation mode, the robot navigates 
autonomously to a list of waypoints, while avoiding obstacles (thanks to the stereo-based terrain 
traversability estimation) and while searching for human victims. 
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